HYDRA Ammonium & HYDRA Nitrate Analyzers

Presented by: Steve Rupert Sr. Product Manager January, 2010

HYDRA Overview

- The HYDRA Analyzers are a Family of Nitrogen Analyzers
 - C22 Controller with three interactive measurement channels
 - Single Integrated Sensor with multiple measurements
- Measurement of Nitrogen as Ammonium or Nitrate
 - HYDRA-NH4
 - Ammonium as Nitrogen, NH₄+-N
 - HYDRA-NO3
 - Nitrate as Nitrogen, NO₃-N

HYDRA Overview

- Suggest Applications
 - Municipal Waste Water
 - Primary Clarifier
 - Aeration Basins
 - Secondary Clarifiers
 - Denitrification
 - Final Effluent
 - Environmental waters
 - Lakes and Streams
 - Agricultural Runoff

HYDRA Overview

- The HYDRA Simplifies the Real Time Measurement of Ammonium and Nitrate ions
 - One Single Integrated Sensor
 - Signal Conditioners for trouble free transmission
 - Easily replaced Electrodes
 - Built in Spray Cleaner reduces maintenance time
 - Analyzer performs corrections for interfering ions and pH compensation
 - All of these features provide the lowest Total Cost of Ownership

What is the HYDRA-NH4?

HYDRA-NH4 Sensor

- Measures the Nutrient Load of Waste Water
- Rugged PVC Housing
- (3) S10s in one body
 - Ammonium ISE
 - Potassium ISE
 - pH Electrode
 - Temperature sensor
 - Signal Conditioners
- Integral Spray Cleaner
- LED Indicator Lights

What is the HYDRA-NH4?

HYDRA-NH4 Analyzer

- Potassium, pH and Ammonium Channels
 - % mA Output (NH4-N) and Temperature (°C or °F)
- Automatic pH Compensation for Total NH₃/NH₄ calculation
- Corrects for Potassium Ion Interference
- Controls Spray Cleaning Cycle
 - Internal Timers and a Relay
- Configurable Hi/Lo Alarm Relay
- (2) 4-20 mA Outputs

What is the HYDRA-NO3?

HYDRA-NO3 Sensor

- Tracks Nitrification Progress, NH₄→NO₃
- De-Nitrification, NO₃→N₂
- Rugged PVC Housing
- (3) S10s in one body
 - Nitrate ISE
 - Chloride ISE
 - Optional pH Electrode
 - Temperature sensor
 - Signal Conditioners
- Integral Spray Cleaner
- LED Indicator Lights

What is the HYDRA-NO3?

HYDRA-NO3 Analyzer

- Nitrate, Chloride and pH Channels
 - % mA Output (NO3-N) and Temperature (°C or °F)
- Corrects for Chloride Ion Interference
- Provides pH for additional Process Information
- Controls Spray Cleaning Cycle
 - Timers and Relay
- Configurable Hi/Lo Alarm Relay
- (2) 4-20 mA Outputs

Where is the HYDRA Used?

- Municipal Waste Water Treatment Plants
 - Primary Clarifier
 - Aeration Basins
 - Secondary Clarifier
 - De-Nitrification
 - Effluent
- Environmental Waters
 - Lakes, Streams, Rivers
 - Agricultural Runoff

Primary Clarifier

Primary Clarifier

- Nitrogen in municipal waste water is primarily Ammonia/Ammonium
- The HYDRA-NH4
 measures the Total
 amount of NH₃/NH₄+, the
 Nutrient Load, going to
 the Aeration Basin
- Nutrient Load determines the
 - Aeration requirement of the basin
 - Activated Sludge requirement of the basin

Aeration Basin

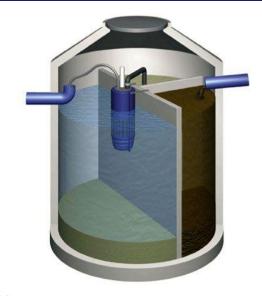
- ❖ The Nitrification Process changes Ammonium, NH₄⁺ into Nitrate, NO₃⁻
- The Microbes that perform this oxidation chemistry are suspended in the Activated Sludge
 - Adding Activated Sludge adds capacity
 - Increases Turbidity (TR8)
- Nitrification is an Aerobic process
 - High O₂ yields High Nitrification
 - The microbes respire and perform the oxidation
 - Adding Nutrient or Sludge increases the O₂ demand (DO8)

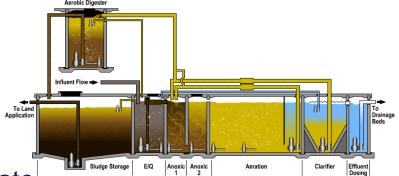
Aeration Basin

- Optimize the Nitrification
 - Real time NH₄⁺ → NO₃⁻
 - High Nutrient Load infers a High O₂ requirement
 - The Nitrification rate is proportional to the O₂ ppm
 - Adding O₂ uses more power but lowers the time needed for Nitrification
- Use Hydra-NH4 to control aeration
 - Low NH₄+: minimal aeration even though O₂ is Low
 - Higher NH₄+: aeration under O₂ Sensor control
- Nitrification Cycle Complete
 - Reduce the Aeration for Anoxic Denitrification or send to the Clarifier

Secondary Clarifier

- Secondary Clarifier
 - All the NH₄⁺ has been converted to NO₃⁻
 - The Activated Sludge (AS) settles out and is either
 - Returned to the Aeration Basin (RAS) or
 - Sent to Waste (WAS)
- HYDRA-NO3 measures the Nitrate in the Clarifier in preparation of Anaerobic Denitrification
- ❖ In Denitrification the microbes are starved of O₂ and coerced to metabolize the Oxygen from the NO₃ releasing Nitrogen gas
 - Anoxic (low O₂)
 - Anaerobic (no O₂)





Anoxic Basin, SBR

Sequential Batch Reactor

- SBR cycles between Aerobic
 → Anoxic → Aerobic, all in one
 vessel or sequence
- Separate aerator and a mechanical mixer
- HYDRA-NH4 and HYDRA-NO3 are both used
- Nitrification (Aerobic)
 - Aeration ON
 - NH₄ ↓ NO₃ ↑
- Denitrification (Anoxic)
 - Aeration OFF, Mixer ON
 - NO₃ ↓ N₂ gas ↑
 - small amount NH₄↑
- Nutrient Removal Phosphate
 - Aeration ON
 - Sludge Absorbs PO₄
 - NH₄↓, NO₃↓, PO₄↓

Anaerobic Denitrification

- Nitrate from Secondary Clarifier is reduced to Nitrogen Gas
- Denitrification requires to zero ppm Oxygen environment
- Methanol is used as a carbon source to drive the microbes to Denitrify by increasing the COD
- HYDRA-NO3 allows feed forward control of the Methanol addition based on Nitrate Concentration and Flow rate.
- Accurate Methanol dosing saves money

Final Effluent & Environmental

- HYDRA-NH4 and HYDRA-NO3 can be used to monitor the Total Nitrogen in the effluent.
 - This is not an Approved method for reporting per 40 CFR Part 136 (NPDES, wastewater)
 - SM 4500-NO3- D (18, 19, 20th &2000) is the ISE based Method
 - It requires sampling and the addition of a conditioning reagent to eliminate interferences from Chloride, Nitrite and bicarbonate.
- ❖ The HYDRA-NH4 can be used to monitor the agricultural NH₄⁺ run off into Lakes and Streams

HYDRA Analyzer Features

- Primary Measurement, NH₄ or NO₃ is fully compensated for pH, Interfering Ions and Temperature
- All Measurements displayed on Home Screen
- Familiar C22 menus and functionality
- Factory Calibrated for easy Start Up
- (2) Configured 4-20 mA Outputs
 - mA1: NH₄-N or NO₃-N 0.1 20 ppm
 - mA2 pH 0-14
- Timer Controlled Relay for actuating the Cleaning Cycles
- Automatic Output Hold Function during Cleaning Cycles
- Hi/Lo Alarm Relay

Serviceable Components

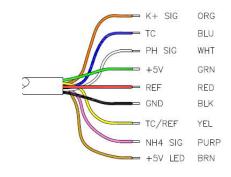
- The HYDRA sensor is designed with few serviceable parts
 - (3) Easily replaceable electrodes
 - Spray Nozzle with wrench flats and ¼-20 thread
 - Screw off Sensor
 Guard with air purge
 hole, eliminates trap air
 bubbles
 - ¼" Compression Fitting on Air Feed Line

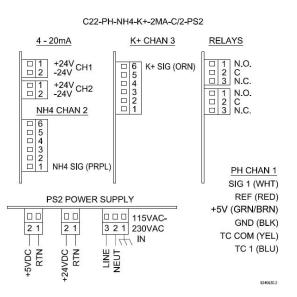
Electrode Replacement

- Remove the Sensor Guard, rinse the electrodes with fresh water and then tamp dry with a paper towel.
- Using the supplied Insertion Tool unscrew the electrode to be serviced.
- * Repair or replace the electrode.
- Apply a thin film of o-ring grease to the o-rings of the serviced/new electrode and a thin coat to the inside rim of the SS tube.
- Place the electrode into the Insertion tool and thread the sensor into the housing.
- Replace the Sensor Guard.

Start Up Guide

- Mount the Analyzer within 30 ft of the sensor's installation point.
- Connect a solenoid controlled ¼" air line to the HYDRA tube fitting. (feed the air tube through the Immersion Assembly)
- Connect the immersion assembly (1 ¼" FNPT) to the HYDRA Sensor.
- Insert the sensor into the tank and attach the HYDRA using the Handrail Mounting Kit





Start Up Guide

- Wire the Sensor,
- the Outputs,
- Relay 1to the Solenoid (not supplied)
- Relay 2 For HI/Lo Alarm
- Supply Power.
- Check the default Configuration, Cleaning Cycle, Alarm, Outputs, in the Instruction Manual, adjust if necessary.

Start Up Guide

- The HYDRA is up and running
 - The Air Blast spray cleaner will actuate once every hour for 10 seconds to keep the measuring electrodes clean
 - Wait several hours for the sensors to equilibrate to the Process conditions
 - Verify readings versus a laboratory test and Standardize the reading if necessary
- Visually inspect the sensor for coatings weekly and verify calibration versus laboratory measurement.

Electro-Chemical Devices

Contact ECD

For over 30 years Electro-Chemical Devices (ECD) has been a recognized leader in industrial process instrumentation:

Liquid analytical sensors, controllers, transmitters, analyzers and electrodes.

Electro-Chemical Devices

1681 Kettering Irvine, CA 92614 Phone: +1-949-336-6060

+1-800-729-1333

Fax: +1-949-336-6064

email: sales@ecdi.com

web: www.ecdi.com

