FC80 Free Chlorine Analyzer

FC80 System Configuration

Free Chlorine Analyzer

17

CI 35.453

- 1) Constant Head Flow Controller
- 2) S80- pH with Temperature Sensor
- 3) Free Chlorine Sensor (FCS)
- 4) T80- Analyzer and Controller
- 5) Optional Spray Cleaner

What is Free Chlorine?

Free Chlorine is the sum of the Hypochlorous acid and Hypochlorite ion in the sample.

17

- Chlorine gas (Cl₂) dissolves in water as Hypochlorous acid (HOCl) and Hydrochloric Acid.
 - $Cl_2 + H_2O > HOCI + OCI^- + H^+ + CI^-$
- Bleach dissolves in water to form Sodium Hypochlorite and Sodium Hydroxide.
 - NaOCI + H₂0 > HOCI + OCI⁻ + OH⁻ + Na⁺

What is Free Chlorine?

Free Residual Chlorine is the measured value, The amount available to do work.

17

- Residual = Dose Demand
- It is the chlorine in the sample that is available to measure.
- The FC80 doesn't measure
 Total Residual Chlorine.
 - Total = Free + Combined
 - Combined Chlorine is chlorine bound to an organic molecule
 - Ammonia products being the most common, Chloramines.
 - Total Chlorine requires a reagent based wet chemistry technique or a special amperometric sensor.
 - Use The TC80

Free Chlorine Sensor

 FC80 Intelligent Free Chlorine Sensor

• Stores Calibration

17

CI 35.453

- Digital Communication
- Polarographic Design
 - Polarization and measurement circuitry inside the FC80 sensor
 - Gold Cathode
 - Silver-Silver chloride Anode
- Replaceable rugged Teflon Membrane
- Refillable Potassium Chloride Electrolyte
- PVC outer body

How does it Work?

 A fixed voltage is applied between the Anode and Cathode.

17

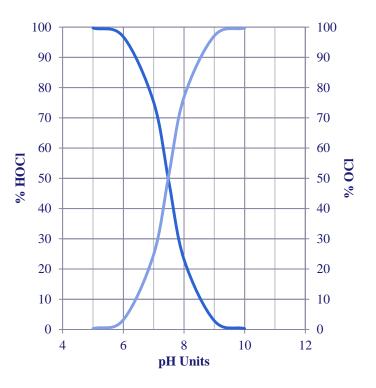
- At Start Up, the polarization voltage consumes any oxidizable materials in the sensor.
- The current decreases with time as the sensor stabilizes at the "zero point current."
- The initial polarization takes about 60 minutes.
- The Chlorine sensor is now ready to use.

How Does it Work? (cont'd)

 The Teflon membrane allows only neutrally charged molecules to pass through

17

- HOCI is a neutral molecule and will pass through the membrane.
- OCI[—] is charged and won't pass.
- Salts are charged and won't pass.
- Hypochlorous acid, HOCI, diffuses through the membrane and is reduced (gains electrons) at the cathode to form chloride.
- Silver is oxidized (gives up electrons) at the anode which precipitates the chloride, as silver chloride, completing the current loop.
- HOCI is directly measured by the sensor and OCI⁻ is inferred from the pH.


Measurement Influences

PH Sensitivity

17

CI 35,453

- The ratio HOCI/OCI is pH dependent.
 - HOCI \leftrightarrow H⁺ + OCI⁻
- Where the pH of a solution
 = pKa of a chemical, the ratio of acid to base species is 1:1
 - pK_a (hypochlorous acid)= 7.5
 - HOCI = OCI⁻ @ 7.5 pH
- By Measuring the pH, the T80 Transmitter can determine the percentage of free chlorine that is being measured and calculate the total Free Chlorine present.

pH Measurement

- Flange mounted S80 pH Sensor
- Measures pH and temperature

17

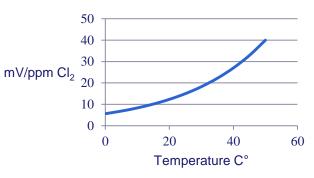
CI 35.453

- Intelligent Sensor stores calibration information
- Digital communication
- Easily replaceable pH electrode cartridge
- Convenient sample port

Measurement Influences

Temperature Sensitivity

- Output increases with temperature, 4% per C°
- Output decreases with cooling
- Primarily due to the change in the r permeability of the membrane with temperature


Flow Sensitivity

17

CI 35,453

- The FC80 sensor consumes chlorine
- Flow replenishes the chlorine supply
- Flows above 10 gal/hour are flow independent
- Low flow = Low reading
- Constant flow = Stable reading

FCA Temperature Dependence, 4%/C°

FCA Flow dependence

Constant Head Flow Controller

The CH Flow Controller eliminates the need for Pressure Regulators and Rotameters that would be needed to keep the flow constant.

17

CI 35.453

The unique overflow design maintains a constant flow at the sensor with incoming variations between 8 and 80 gal/hr.

Where is it used?

- Chlorination of Municipal drinking water
- Cooling Towers

17

- Industrial disinfection of rinse waters
 - Food processing
 - Pasteurization lines
- Bleaching Processes
- Oxidation in Chemical processing
 - Mining
 - Sulfide removal

Start up Guide

 Mount FCA Panel securely to a wall or rail system.

17

CI 35.453

- Supply power to the T80 Transmitter as shown in the "Wiring Instructions".
- Install the FCS and S80 pH sensors into the flow cells. (The pH is closest to the CHFC tube).
- Connect sample line to the ¼" FNPT on CHFC tube.
- Connect drain line to ³/₄" barb fitting on the bottom of the CHFC tube.
- Supply sample to the FC80 and let run for 60 minutes.

- Verify the Calibration of the S80 pH sensor.
- Verify the Chlorine reading with a DPD test.
- ✤ IT'S DONE !!!
- Check Calibration monthly

Electro-Chemical Devices 35,453

17

CI

Contact ECD

For over 30 years Electro-Chemical Devices (ECD) has been a recognized leader in industrial process instrumentation:

Liquid analytical sensors, controllers, transmitters, analyzers and electrodes.

Electro-Chemical Devices 1500 North Kellogg Dr.

Anaheim, California USA 92807

Phone: +1-714-695-0051 +1-800-729-1333+1-714-695-0057Fax: email: sales@ecdi.com web: www.ecdi.com

